
Journal of Statistical Physics, Vol. 103, Nos. 1�2, 2001

A Reader's Guide to Gacs's ``Positive Rates'' Paper

Lawrence F. Gray1

Received February 23, 2000; final November 6, 2000

Peter Gacs's monograph, which follows this article, provides a counterexample
to the important Positive Rates Conjecture. This conjecture, which arose in the
late 1960's, was based on very plausible arguments, some of which come from
statistical mechanics. During the long gestation period of the Gacs example,
there has been a great deal of skepticism about the validity of his work. The
construction and verification of Gacs's counterexample are unavoidably com-
plex, and as a consequence, his paper is quite lengthy. But because of the
novelty of the techniques and the significance of the result, his work deserves to
become widely known. This reader's guide is intended both as a cheap substitute
for reading the whole thing, as well as a warm-up for those who want to plumb
its depths.

KEY WORDS: Phase transition; universal computation; error-correction;
cellular automaton; stability; self-simulation.

Peter Gacs's paper tells us something mathematically rigorous about phase
transitions that was thought by many to be impossible. Namely, it contains
an example of a one-dimensional lattice system that has a phase transition,
in spite of the fact that it only has nearest-neighbor translation-invariant
interactions and a finite local state space. To be sure, his model differs from
standard statistical mechanical models, such as the Ising model, in that it
is not defined in terms of a Hamiltonian. But it is not clear why that makes
a difference.

In any case, the highly organized cooperative behavior found in Gacs's
model is worthy of study. Unfortunately, the paper is complicated enough
so that very few will actually want to work their way through the details.

1

0022-4715�01�0400-0001�19.50�0 � 2001 Plenum Publishing Corporation

1 School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455; e-mail:
gray�math.umn.edu

It is my intent to provide you with a simplified version, with as little of the
messiness as possible. Naturally, my presentation will be lacking somewhat
in rigor. Nevertheless, I hope it will give you an understanding of all of the
key ideas.

1. THE MATHEMATICAL SETTING

In this section I will try to lay the mathematical groundwork for our
discussion as efficiently and painlessly as possible. In particular, I need to
explain the idea of a cellular automaton with random errors. In Section 2,
I will give a few simple examples and explain the connection to statistical
mechanics. The notation and terminology introduced here will be consis-
tent with that used by Gacs, except for some minor modifications.

Underlying all of the models to be discussed here is a discrete lattice 4,
and in all of our examples, we will take 4 to be either the set of integers Z,
or the set of integer pairs Z2. These two options are called, respectively, the
``one-dimensional case'' and the ``two-dimensional case.'' Each member of
the lattice 4 is called a site.

Also associated with each model is a state space, typically denoted
by S. In all cases to be considered here, S will be a finite set. This set
represents the possible states at a site. In applications to statistical
mechanics, a common choice is S=[&1, +1]. For example, in the
famous ``Ising model'', the lattice represents an array of electrons, and the
states correspond to two possible spin directions, ``spin down'' and ``spin
up.''

If we specify a state for each site of the lattice, we obtain a configura-
tion. The set of all configurations is thus the set C=S4. Generically, an ele-
ment of configuration space will be denoted by the Greek letters ! or '.
The state taken by a configuration ! at a site x is denoted by !(x).
Configurations can also depend on time, in which case they are called
space-time configurations and typically denoted by an expression like

!(x, t)

which stands for the state taken by the space-time configuration ! at site
x and time t. To keep things simple in this article, I will always take time
to be discrete, in spite of the fact that for most applications to statistical
mechanics, continuous time is the more convenient choice. For the kinds of
qualitative behavior that I want to discuss, the difference between discrete
and continuous time is not important. Gacs's model can be implemented in
both settings.

2 Gray

Given a space-time configuration !, a set A�4, and a time t, we will
sometimes abuse notation slightly, and write

!(A, t)

for the restriction of !(} , t) to the sites in A.
Now I will introduce some deterministic dynamics. Only two

ingredients are needed: an interaction neighborhood N, which is simply a
finite subset of 4, and a transition function Tr, which is a function from SN

to S. These ingredients determine a cellular automaton, which is the collec-
tion of space-time configurations ' that satisfy the following condition:

'(x, t)=Tr('(N+x, t&1)), x # 4, t>0 (1)

where N+x=[y+x: y # N]. Each such ' is called a trajectory of the
cellular automaton. Clearly, there is precisely one trajectory ' for each
initial configuration '(} , 0).

Next I want to introduce random ``errors'' into the model. In addition
to the two ingredients that define a cellular automaton, I need two further
ingredients: a parameter = # [0, 1], called the error rate, and a probability
measure & on the state space S. I call this probability measure the noise dis-
tribution. I will be particularly interested in the case where & puts positive
mass on every member of S. When this condition holds, I will say that &
is strictly positive.

The error rate is used to define a random error set E. This is a random
subset of [(x, t): x # 4, t>0] whose probabilistic properties are determined
by the condition that the events

[(x, t) # E], x # 4, t>0

be independent, with each individual event having probability =. The noise
distribution is used to define a collection of S-valued random variables
s(x, t), x # 4, t>0, called noise variables. The probabilistic properties of the
noise variables are determined by the condition that they be independent
of each other and of E, and that they all have distribution &.

Given an interaction neighborhood N, a transition function Tr, a ran-
dom error set E, and a collection of noise variables s(x, t), the correspond-
ing faulty cellular automaton is a family of stochastic processes, one for
each initial configuration. Each stochastic process in this family is a ran-
dom space-time configuration ' determined by three things: (i) the initial
configuration '(} , 0); (ii) the requirement that (1) hold for all (x, t) � E;
(iii) the requirement that '(x, t)=s(x, t) for (x, t) # E. Each such ' is
called a random trajectory for the faulty cellular automaton. The initial

3A Reader's Guide to Gacs's ``Positive Rates'' Paper

configuration of a random trajectory can itself be random, in which case I
assume that it is independent of E and of the collection of noise variables.
It is not hard to check that all of the random trajectories in a faulty cellular
automaton are discrete-time Markov processes, each having the same tran-
sition probabilities.

The informal description of a faulty cellular automaton is this. The
system follows the transition rule Tr everywhere except at space-time
points (x, t) # E. For (x, t) # E, independently choose a value for '(x, t)
using the noise distribution. I will say that an error occurs at x at time t
for each (x, t) # E, even if the value of '(x, t) happens to agree with the
value that would have resulted from applying (1) at (x, t). Note that the
occurrence of an error can affect states at points (x, t) � E, by way of (1).

Suppose ' is a random trajectory for a faulty cellular automaton. If the
probability distribution of '(} , t) is independent of t, then that probability
distribution is called a stationary measure for the faulty cellular automaton.
I will now state the Positive Rates Conjecture, which for simplicity I give
in the context of faulty cellular automata. There are versions of the con-
jecture that refer to more general systems, such as ``probabilistic cellular
automata,'' and their continuous-time analogues, ``interacting particle
systems.'' Gacs's counterexample applies to all such versions.

Conjecture 1 (Positive Rates). A one-dimensional faulty
cellular automaton with (i) finite interaction neighborhood N, (ii) strictly
positive error rate =, and (iii) strictly positive noise distribution &, can have
at most one stationary measure.

The phrase ``positive rates'' refers to conditions (ii) and (iii). It is not
uncommon to be somewhat casual with terminology from statistical
mechanics and say that a system has a phase transition if it has positive
rates and more than one stationary measure. So a brief version of the con-
jecture is ``no phase transitions in one dimension.'' This statement is known
to be true for the restricted class of legitimate statistical mechanics models
with finite-range interactions, where ``legitimate'' means that the dynamics
are defined in terms of a Hamiltonian function according to a standard
procedure (see ref. 7 for details).

2. EXAMPLES AND THE PHYSICS CONNECTION

The following examples will help to explain the connection between
cellular automata and statistical mechanics. They will also help prepare
you for the more elaborate model that constitutes the main point of this
article.

4 Gray

A key feature in each of these examples is the presence of ground
states. A ground state of a cellular automaton is a configuration ! that is
a fixed point of the dynamics. That is, Tr(!(N+x))=!(x) for all x # 4.
The most common types of phase transitions have to do with ground
states.

Example 1 (Majority Vote). For this model, the state space is
the same as for the Ising model, namely S=[&1, 1]. I will consider both
4=Z and 4=Z2. For both choices of 4, I will assume nearest-neighbor
interactions. That is,

N={[&1, 0, 1]
[(&1, 0), (0, &1), (0, 0), (1, 0), (0, 1)]

if d=1
if d=2

Transitions are determined by taking a simple majority vote:

Tr(!(N+x))=the majority value in [!(y): y # N+x]

For the random model, I also need to specify the noise distribution. To
preserve (+�&)-symmetry, I let &[&1]=&[+1]=1�2.

This model clearly has many ground states. The two most important
ones are ``all +1'' and ``all &1.'' Imagine starting the model with the initial
configuration ``all +1''. Introduce a random error set with a small noise
parameter =>0. You might expect that, in spite of the errors, the majority
vote mechanism will prevent the system from straying very far from its
initial configuration. This expectation is justified for the two-dimensional
case but not for the one-dimensional case, as I will explain.

First, let me talk about the Ising model, for the sake of comparison.
It has the same configuration space as the majority vote model. It also has
the two ground states ``all +1'' and ``all &1.'' In the dynamical version of
the Ising model (see ref. 7), the Hamiltonian leads to a kind of weighted
majority vote transition function that is qualitatively like the transition
function of the model I have been describing. The Ising model also has a
kind of noise parameter, called ``temperature.'' The ``errors'' in the Ising
model are sometimes called ``thermal fluctuations.''

The behavior of the Ising model near the ground states depends on the
dimension of the lattice. In two dimensions, it can be mathematically
proved that when the temperature is positive and sufficiently small, there is
a stationary measure ``near'' each ground state. So there is a phase transi-
tion. In one dimension, the model tends toward a unique ``fifty-fifty''
stationary measure, no matter what the initial configuration is; there is no
phase transition in one dimension.

5A Reader's Guide to Gacs's ``Positive Rates'' Paper

The majority vote cellular automaton is believed to behave qualita-
tively like the dynamic Ising model as far as the ground states ``all +1'' and
``all &1'' are concerned. Unfortunately, only the one-dimensional result has
been shown mathematically (see ref. 5). For the two-dimensional result, we
only have computer simulations. But no one seriously believes that there
are any surprises here. I am quite confident myself that the majority vote
model has a phase transition in two dimensions.

Symmetry is important for this model. If & is changed, thereby favoring
one of the ground states, then it is believed that the system has a unique
stationary measure for any =>0. This is analogous to what happens when
there is an external field in the Ising model. The phase transition seems to
require ``symmetric errors.''

Example 2 (Discrete-Time Contact). The state space is S=
[0, 1]. I consider only the one-dimensional, one-sided, nearest-neighbor
version: 4=Z and N=[&1, 0]. The transition function is given by

Tr(!(x&1), !(x))=max[!(x&1), !(x)]

where I have chosen to write Tr(!(x&1), !(x)) rather than Tr(!(N+x))
because the interaction neighborhood is so small. The phrase ``one-sided
contact'' refers to the fact that the 1's in this model spread towards the
right ``by contact'' with the nearest neighbor. For the noise distribution &,
I let &[0]=1 and &[1]=0. A full discussion of the continuous-time version
of this model can be found in ref. 7.

This model has two ground states, ``all 0'' and ``all 1.'' Because of the
biased noise, ``all 0'' is clearly a fixed point for the dynamics, even when
=>0. So the point mass at ``all 0'' is a trivial stationary measure for the
system. It can be shown that for sufficiently small =>0, the system also has
a (nontrivial) stationary measure close to ``all 1.''

Is this a phase transition? Not really, because my choice for & was not
strictly positive. It can be proved mathematically that if we make any other
choice for &, then for small =>0, the system will go to a unique stationary
measure that is near ``all 1'' no matter what the initial configuration is.

One could say that the ``all 1'' ground state is stable under strictly
positive noise perturbations for this model, while the ``all 0'' ground state
is not. The stability of the ``all 1'' ground state does not depend on the
choice of &. The ground states in the majority vote and Ising models also
have a kind of stability under a strictly positive noise perturbation, but
only when & is symmetric.

Example 3 (Toom). This model is the same as the two-dimen-
sional majority vote model, except for one difference: the interaction

6 Gray

neighborhood is reduced in size to N=[(1, 0), (0, 1), (0, 0)]. So the
majority vote is taken over the so-called ``NEC neighborhood,'' consisting
only of the ``Northern,'' ``Eastern,'' and ``Center'' sites of the set of nearest
neighbors.

The Toom model has the ground states ``all +1'' and ``all &1.''
Toom(9) proved that both of these ground states are stable under noise per-
turbations, for all choices of the noise distribution &. So the Toom model
has a phase transition, and in a sense, it is a stronger one than the phase
transition in the majority vote and Ising models, because symmetry of the
noise distribution is not required. The phase transition in Gacs's model is
of this type.

There is no natural one-dimensional version of the Toom model. If
you try to make one, you will get a variation on either the one-dimensional
discrete-time contact model, or the one-dimensional majority vote model,
and the behavior will be qualitatively like that of those models.

All of the examples given above share two important common
features. The first feature is monotonicity, which roughly says that if you
change the configuration by switching some of the &1's to +1's, then in
a certain natural sense, you improve the chances for the appearance of
+1's in the future evolution of the system. In statistical mechanics, such
monotone models are said to be ferromagnetic. The standard Ising model
is ferromagnetic, but there are generalizations, such as the so-called ``spin-
glass'' models, that are not. The other common feature is that the various
stationary measures are associated with ground states. Most of the phase
transitions in statistical mechanics are related to ground states in some way.

A thorough study of these examples suggests the following intuitive
picture. Imagine that you start with the ground state ``all +1'' in one of
these models, and then let the noise do its work. This noise will repeatedly
produce arbitrarily large finite islands of &1's within the sea of +1's. If the
``all +1'' ground state is to be stable, these islands of errors must be kept
under control. If the ``all &1'' ground state is stable as well, then the
dynamics must also keep control over finite islands of +1's in a sea of
&1's. The Toom and majority vote models show how this can happen in
two-dimensional models. Roughly speaking, finite islands in two dimen-
sions contain extra ``corners'' that can be ``eroded'' by the surrounding sea.
But in a one-dimensional model, it would seem impossible for any
dynamics with finite interaction neighborhood to distinguish between a
large island and the sea surrounding it. At the interface between an island
of one type and a sea of the opposite type, the dynamics would only ``see''
an interface between two seas of opposite type. How can both ground
states be stable?

7A Reader's Guide to Gacs's ``Positive Rates'' Paper

Although this argument may seem too simple to deal with something
as general as the Positive Rates Conjecture, it has in fact formed the basis
for results that support that conjecture. For example, the remarkable
stability results of Toom(9) are based on the idea of eliminating finite
islands, and his results imply that a one-dimensional monotone model can-
not have two ground states that have the same strong kind of stability that
the two-dimensional Toom model has. And I proved a result in ref. 4 that
supports the conjecture, using a form of the finite islands idea. I think it is
fair to say that anyone who has had reason to believe the conjecture has
some form of this argument in mind. I also think that it is not too much
of an oversimplification to say that understanding the counterexample
of Gacs basically amounts to understanding just how it takes care of
arbitrarily large finite islands of errors.

3. A BRIEF HISTORY OF THE PROBLEM

I first became aware of the Positive Rates Conjecture when I was a
graduate student at Cornell, working under Frank Spitzer in the mid-
1970's. At that time we heard rumors that a Russian logician had found a
strange counterexample. The logician was Kurdyumov, and his example
was said to be based on ideas from logic, especially the concept of a univer-
sal Turing machine. Eventually, my colleague and fellow graduate student
David Griffeath obtained a copy of a short description of this counter-
example, written by Kurdyumov.(6) Unfortunately, this article seemed to
contain no mathematics whatsoever. Instead, it was a description of some
scenario involving colonies of workers, with defectors infiltrating neigh-
boring colonies, and other such things. David called it a ``spy novel.'' We
also heard that when Kurdyumov tried to explain his counterexample to
experts in the field (such as Dobrushin), there was no one who understood
enough of what he said to be able to pass judgment on its validity. We
eventually decided that the counterexample was at best a mathematical
fantasy.

Shortly afterward, Kurdyumov teamed up with Gacs and Levin(3) to
produce a very simple one-dimensional model with state space [&1, +1]
and range-2 interactions. The model has ground states ``all +1'' and ``all
&1,'' and they conjectured that these ground states are stable under noise
perturbation. No proof of stability was given, but computer simulations are
quite convincing. Furthermore, when the error rate is 0, the (deterministic)
dynamics of the model are such that finite islands of one type are always
eliminated by a sea of the opposite type. However, this elimination of finite
islands happens in a fragile manner, and from the very beginning, many
of us doubted whether there was any type of stability. Recent results of

8 Gray

Park, (8) a student of Gacs, give strong evidence that the ground states are
in fact unstable in this model.

On the opposite side of the problem, I proved in ref. 4 that for mono-
tone, one-dimensional, nearest-neighbor, continuous-time models having
the state space S=[&1, +1], only one stationary measure exists if the
rates are positive. Note that this result concerns general stationary measures,
not just those that might result from perturbing ground states. It is still an
open question whether this result holds true when the nearest-neighbor
assumption is relaxed to finite range interactions. Gacs's model is not
monotone, so it does not answer this question.

Fortunately, Gacs did not give up on finding a counterexample. Start-
ing with the highly informal ideas of Kurdyumov, he eventually produced
the paper, (2) which presumably contains the first counterexample to the
Postive Rates Conjecture. I say ``presumably'' because I believe there is no
one else in the world besides Gacs who understands that paper. When the
preprint of it first became available in 1984, I was visiting at UCLA. Rick
Durrett and I tried unsuccessfully for about a month to read it. We then
invited Gacs to visit us and explain it all. He graciously accepted our
invitation, but we still were unable to understand the example. Too many of
the details were missing, and too much of the write-up was in a style that was
highly unconventional for a mathematical work. Nevertheless, I began to
think that there was indeed a rigorous counterexample hidden somewhere.

Experts in the field began to pressure Gacs to write a more accessible
version. It has taken almost 15 years. The result is the long paper following
this article. The example contained in that paper is much improved over
the earlier version, as I will explain in Section 4. Gacs has included all of
the details, and they meet the commonly accepted standards for mathe-
matical rigor. It is an extremely difficult work to read (partly because of the
presence of all the details!), but I am convinced that this complexity is
unavoidable, barring further major breakthroughs.

When the paper was completed, I was asked by Joel Lebowitz to
referee it for this journal. I spent over a year sporadically attempting to
make my way through it. Eventually, I read most of it and became convinced
that it was essentially correct. Nevertheless, I had many questions. So I
obtained permission from Joel to reveal my identity as referee to Gacs.
During two long weekends together, we worked through the paper line by
line. Many mistakes were corrected, and all of my questions were answered.
It would be foolhardy for me to guarantee that all of the mistakes have
been removed. But I do assert that any remaining mistakes are minor and
easily fixed. The result is correct. It is also quite beautiful, in spite of the
fact that only the most dedicated reader will be able to get through it. In
Section 5, I will explain all of the main ideas that make the example work.

9A Reader's Guide to Gacs's ``Positive Rates'' Paper

4. FREQUENTLY ASKED QUESTIONS

What Kind of CellularAutomatonIs the Gacs Counterexample?
The model has a noise parameter =, and it is deterministic when ==0. It
is (of course) one-dimensional, and it has nearest-neighbor interactions. So
in these respects, it is like the examples of Section 2. It differs from those
models in that its state space is very large (but finite), and it is not
monotone. Gacs could have chosen to use the state space [&1, +1], at
the cost of losing the nearest-neighbor property, but his model has an
essential lack of monotonicity that cannot be avoided. If you ignore part
of the state space, then you could say that there are ground states. The
state space can be roughly thought of as a product of two main com-
ponents. The first component contains the part of the state that is to be
preserved at each site, and the second component is the part that makes
this preservation possible. It is the first part that is associated with the
ground states. In my simplified version of the model, to be described in
Section 5, the part that is preserved is called ``Address.''

How Big Is the State Space? The model depends on some inter-
related parameters that can be chosen in various ways. The relationships
that must be satisfied by these parameters are found in the first part of
Section 9 in Gacs's paper. A certain constant R0 is involved that is known
to be finite, but unfortunately I don't know how large it is. Once R0 is
determined, the number of states can be set equal to R4�3

0 . Various con-
siderations involving relationships to other parameters lead me to conclude
that R0 should be at least 218, but it may need to be much larger. I doubt
it is larger than 2300. Thus, the number of states is probably somewhere
between 224 and 2400. These numbers may seem huge, but perhaps they
should be viewed in a different way. In the language of computers,
224 states is only 3 bytes, and 2400 is only 50 bytes. This language is
appropriate in view of the way in which Gacs describes his model, namely
as a one-dimensional array of small computers, one computer for each site.
Each computer needs at most 50 bytes of RAM.

What Error Rate Can Be Tolerated by the Model? Gacs's
proof gives an upper bound of =�R&40

0 . However, no attempt was made
in the proof to optimize either this value, or the size of the state space.

Why Is the Gacs Paper so Long? The paper is apportioned into
five roughly equal chunks: (i) exposition; (ii) definitions and examples
involving the most important mathematical issues; (iii) proofs connected
with those issues; (iv) definitions and proofs involving the details of the

10 Gray

transition function; (v) results that go beyond what is needed to disprove
the Positive Rates Conjecture. Of course, these chunks are somewhat inter-
mingled. I don't see how the first three chunks can be shortened signifi-
cantly, although we may eventually have a better understanding of the
whole problem that will allow for a more compact presentation.

The fourth chunk is needed because of the high degree of skepticism
that has been expressed towards this work. In many respects, the details of
the transition function are quite arbitrary. There would be many ways to
implement the necessary procedures, just as there are many ways to write
a computer program to accomplish a particular task. Once the overall pic-
ture is well-understood, the details are not so interesting to many people.
But some version of those details should appear somewhere, and this is the
right place for them. Furthermore, there may be some experts who will find
something of value in the details; Gacs used many clever tricks in this part
of the paper to try to make things work as smoothly as possible. Indeed,
the programming task required in working out the details of the transition
function is not a standard one, since it involves ``parallel processing'' on the
sites of the lattice. In contrast to ordinary programs, no universally accepted
standard idiom has emerged in computer science for the writing of such
programs. Also, proofs of properties of such programs are notoriously
complicated.

The fifth chunk is included for two reasons. The first is that it contains
results that are interesting in their own right, apart from the Positive Rates
Conjecture. The second reason has to do with Gacs's intellectual honesty:
if he was going to publish such a long paper, he wanted it to contain some
interesting results that were not already in his 1986 paper.(2)

What Are These Additional Results? There are at least four
significant results in the paper that go beyond what is needed for a counter-
example to the Positive Rates Conjecture. The first of these already
appeared in the 1986 version, while the others are new. They are: (i) the
model is capable of universal computation; (ii) it can be implemented in
continuous time; (iii) the model can be made ``self-organizing;'' (iv) it
has the ``positive capacity property.'' Result (i) implies that the model is
capable of arbitrarily complex behaviors that are stable in the presence of
noise. Result (ii) is not surprising, but it is technically quite difficult to
prove, due to the fact that the array of ``computers'' forming Gacs's model
need to work in parallel. The intrinsic lack of synchronization in con-
tinuous-time models makes parallel operations difficult. Result (iii) says
that the model is capable of highly organized behavior, even if the initial
configuration is relatively disorganized. Result (iv) has to do with the
ability of the model to store information reliably. The two-dimensional

11A Reader's Guide to Gacs's ``Positive Rates'' Paper

Toom model is capable of reliably storing one bit of information in the
presence of noise. This single bit is, namely, whether the initial configura-
tion is ``all &1'' or ``all +1.'' The Gacs model is capable of reliably storing
one bit of information per site in the presence of noise.

Aside From the Results Just Mentioned, in What Other
Ways Does Gacs's Present Paper Improve on the 1986 Paper?
The most important way is in readability. The 1986 paper was written too
much like a computer program. The current paper also contains parts that
look like a computer program, but those parts involve the specific details
of the transition function, for which it is actually necessary, for the sake of
the proof, to use a kind of programming language. I discuss the reason for
this at the end of Section 5.3. Another significant difference involves the
initial configurations. The configurations corresponding to ``ground states''
in the current paper are much simpler than the ones that were used in the
1986 version. Also, many of the basic concepts needed in the model are now
better understood. As a consequence, parts of the proof have been simplified
or made more efficient. Finally, if you care about seeing all the details, you
won't be able to find nearly as many of them in the 1986 paper as you can
in the current paper.

What Is the Main Idea That Makes the Model Work? Here
is a short answer. The model uses a hierarchy of majority vote and contact
procedures to correct errors. At the lowest level, these procedures work
much like the transition rules for the majority vote and discrete-time con-
tact models of Section 2 to restore order to the system when simple errors
occur. Periodically, more complicated majority vote and contact proce-
dures are carried out on successively larger scales, so that eventually, any
finite island of errors can be corrected. These higher order operations are
made possible by ``self-simulation,'' which is described in detail in Section 5.3.
All of the other main ideas behind the model can be found in my explanation
in Section 5. For the complete details, you will, of course, need to read
Gacs's paper.

Why Is This Result so Important? From a mathematical point
of view, the answer is that it solves a problem that has puzzled a lot of
people for many years, and it does so by introducing several new ideas into
the study of cellular automata. Gacs's cellular automaton behaves in a
manner that is completely unfamiliar. The mechanisms that make it work
are likely to be useful in the future.

From the point of view of computer science, the importance stems
from the fact that Gacs's model can be thought of as an array of simple

12 Gray

computers. Even though I have restricted my discussion to the infinite
lattice 4=Z, Gacs's results also have implications for large finite arrays.
Essentially, he shows that there exists a simple finite-state machine M such
that for any computer program ? and any desired level of reliability p<1,
the program ? can be run with reliability p on a sufficiently large one-
dimensional array of copies of M, each one communicating only with its
nearest neighbors, even if these machines all have the same small but
positive error rate. The size of the array is determined only by the memory
and time resources required by the program ? and by the reliability level p.
A compiler for such a program would simply translate ? into an initial
configuration for the array. Such a compiler could be made independent of
the size of the array. I would also think that computer scientists would be
interested in the details of the hierarchical error-correcting techniques used
in Gacs's model.

Gacs's result also has importance in other fields of science. We have
already discussed some of the connections to statistical mechanics. In a dif-
ferent direction, I think that the self-organizing feature might be of interest
to biologists. Gacs shows in his paper that highly organized arrays can
form spontaneously out of relatively chaotic initial conditions, and that
these arrays are capable of reliably carrying out complex tasks, even if
the individual components in the array are unreliable. One could easily
speculate here about possible implications for molecular and evolutionary
biology.

One Last Time: Is the Proof Correct? Yes. Once you under-
stand the principles that make it work, you also understand that the argu-
ment is very robust.

5. HOW IT WORKS

My description will be in five parts, which I think correspond to the
five key ideas that make the model work. I will describe a simplified version
of Gacs's model. In many of the details, my version will not agree with his
version. There are two reasons for this. First, I am not trying to explain all
of the results obtained by Gacs, so I don't need some of the advanced
features found in his model. Second, it turns out that some things are best
treated one way at the informal level of this article and another way when
all of the details are included. The differences have to do with efficiency of
presentation, not with essential ideas.

It is my opinion that the version presented here can be fleshed out to
become entirely rigorous. Of the five propositions stated below, I consider

13A Reader's Guide to Gacs's ``Positive Rates'' Paper

my arguments in favor of Propositions 1 and 2 to be reasonably complete.
My discussion of Proposition 3 is less complete, mainly because it requires
some knowledge of ideas from computer science that don't fit into this
article. However, the necessary details can be found in a relatively short
and self-contained part of Gacs's paper (Sections 7.3 and 7.4). My argu-
ment in favor of Proposition 4 is close to being a rigorous proof, except
that it relies on Proposition 3. Proposition 5 is the most critical one. I am
able to give you the main ideas of the proof, but I must omit many details
(which I have worked out for myself). However, I haven't hidden any
serious difficulties.

Let's begin. One of the most obvious differences between Gacs's
version and mine is that I will use the following range-5 interaction
neighborhood:

N=[&5, &4, &3, &2, &1, 0, 1, 2, 3, 4, 5]

Gacs's model has nearest-neighbor interactions. By using this expanded
neighborhood, I can make the state space somewhat simpler.

You should imagine that at each site of the lattice 4=Z, there is a
small computer. In keeping with the terminology in Gacs's paper, I will call
such a computer a cell. The state of each cell can be described by a finite
bit string, or in other words, by a finite sequence of 1's and 0's. Thus, the
state space is S=[0, 1]K for some positive integer K.

It will be convenient to think of a state as being composed of several
shorter bit strings that have been concatenated together. Each of these
shorter strings is called a field, and each field will have a name. There are
six of them: Address, Age, Flags, SimBit, Workspace, Mailbox.

The first two fields form what I call the local structure, while the last
three fields are the simulation structure. The Flags field controls error-
correction in the local structure, and it also provides the means by which
the simulation structure influences the local structure.

For each of the local structure fields, I will think of the bit string in
that field as a binary representation of a positive integer. So, for example,
if I were to say that a certain field of five bits has value 5, then I would
mean that the five bits take the values 00101. And if I say a field takes the
value 0, then I mean that all of the bits in the field equal 0.

The value of the Address field is an integer between 0 and Q&1,
where Q is a parameter called the colony size. In the initial configuration,
the Address field at x has value x (mod Q), and one of the main goals of
the model is to preserve these initial values, and to restore them where
errors occur. When the initial values are preserved, the cells are naturally
organized into colonies consisting of Q cells, with the Address field indicating

14 Gray

the location of a cell within the colony. The significance of these colonies
will be explained later, particularly in Sections 5.2 and 5.3. It is natural to
let Q be a power of 2, so that the Address field contains log2 Q bits. In
what follows, I will assume that Q�213.

The value of the Age field is an integer between 0 and U&1, where U
is another parameter, called the work period. In my version of the model,
I let U=128Q, so the Age field contains 7+log2 Q bits. The cells will
repeatedly go through a cycle of transitions, with each cycle containing
U time steps. In the initial configuration, the Age field has value 0 at all
sites. Under normal circumstances, the value of the Age will change by +1
(mod U) at each time step.

The Flags field contains two bits, which I call Flag1 and Flag2.
Roughly speaking, if Flag1 has the value 0, then a cell is operating nor-
mally. A value of 1 for Flag1 indicates that there is some sort of emergency,
presumably caused by transition errors. In such a case, the value of Flag2
controls the ``direction'' of recovery operations. The initial value for both
Flag1 and Flag2 is 0 at all sites. The transition rules for the Flags field are
given in Section 5.2. Flags is a simplified version of the ``Kind'' field in
Gacs's paper.

For the simulation structure fields, I will think of the bit strings as
representing information. The Workspace field is the place for storing
information in a cell, and the Mailbox field is the place for exchanging
information among several cells. I will not give the sizes of these fields
explicitly. However, it can be shown that they are bounded above by
a log2(QU), where a is a constant that does not depend on Q or U. In the
initial configuration, all of the bits of the Mailbox and Workspace fields are
set equal to 0.

The SimBit field contains five bits. The first of these bits is called the
primary SimBit. By combining the primary SimBits of a colony, a bit string
is obtained that is used to represent the state of a single ``simulated cell.''
I will explain in Section 5.3 all about the simulation that is to be carried
out by the system. In Section 5.4, I will give the initial values for the SimBit
fields. The remaining four bits in the SimBit field are used for error-correc-
tion, as described in Section 5.4.

The phase transition will come from the Address field. The initial
values of this field are periodic in the lattice, with period Q. The elaborate
error-correcting properties of the model, to be described in the remainder
of this section, ensure that if =>0 is sufficiently small, then for any given
site x and time t, the value of Address at x at time t will equal its initial
value with high probability. Assuming that this claim is true, a standard
argument shows that there must be a stationary measure for the system
that puts high probability on the event that at any given site x, the Address

15A Reader's Guide to Gacs's ``Positive Rates'' Paper

field equals x (mod Q). Shift this stationary measure along the lattice to
obtain Q&1 other stationary measures. Thus, if we restrict our attention
to the Address field, the system will have Q different stable ground states,
and hence a phase transition.

There is another way to view the stability of the Address field values.
One could say that the system has the ability to ``remember'' the initial
values of the Address fields, which is to say that it can reliably store log2 Q
bits of information. Gacs's more sophisticated model has the ability to
reliably store an infinite amount of information. More precisely, it can
store one bit per site. That is, a one-bit field can be included in the state
of each cell, with the initial value being chosen arbitrarily at each site, and
the system will maintain that part of the initial configuration with high
probability for all time. This gives Gacs's model uncountably many dif-
ferent stationary measures.

5.1. The Structure of the Random Error Set

My goal in this subsection is to take care of the probabilistic part of
the argument up front, so that the rest of the discussion can focus as much
as possible on the properties of the deterministic system. Recall that there
are two sources of randomness: the random error set E and the noise
variables s(x, t). The model will be so robust, that the values taken by the
noise variables will be irrelevant, even if there is a ``malicious demon''
choosing the values of s(x, t).

I cannot be so cavalier about the error set E. In this subsection, I will
decompose E into pieces called ``level-n errors'' where n�0. These pieces
are certain types of clusters of errors in E. It will be shown that they are
extremely sparse for large n. In Sections 5.2 and 5.4, I will explain how the
system is able to correct all level-0 and level-1 errors, and in Section 5.5,
I will explain how the higher-level errors are dealt with.

In defining various types of clusters of errors, it will be useful to have
some simple terminology for the degree to which two sets are separated in
space-time. Let A, B be subsets of the space-time set Z_[0, 1, 2,...]. For
positive integers m, n I will say that A and B are (m, n)-linked if there is a
space-time box of the form [x, x+m)_[y, y+n) that contains at least
one member of each of the sets A and B. If A and B are not (m, n)-linked,
then I will say that they are (m, n)-separated.

Let E be the random error set. A candidate level-0 error is a nonempty
subset of E that is contained inside a space-time box of the form
[x, x+1]_[t, t]. In other words, it is either a set consisting of a single
error, or it is a set containing two errors at adjacent sites. A candidate

16 Gray

level-0 error S is a level-0 error if the two sets S and E "S are (24, 24)-
separated. This condition means that S is required to be isolated from the
rest of E by a certain amount. The number 24 is simply a convenient choice
that makes later estimates work out well. The union of all level-0 errors E
is called level-0 noise. It is denoted by E0 .

Now I continue inductively. Fix n>0 and suppose that I have defined
candidate level-k errors, level-k errors, and the level-k noise Ek for k<n.
A nonempty set S�(E "En&1) is a candidate level-n error if (i) S is con-
tained in a Qn_U n space-time box, and (ii) S contains at least two disjoint
candidate level-(n&1) errors that are (24Qn&1, 24U n&1)-linked. A candi-
date level-n error S is a level-n error if (iii) S does not contain two candi-
date level-n errors that are (104Qn&1, 104U n&1) separated, and (iv) the
sets S and E "(S _ En&1) are (24Qn, 24U n)-separated. Level-n noise,
denoted by En , is the union of En&1 and all of the level-n errors in E.

Informally, the definitions say the following: a candidate level-n error
S in E must be (i) small enough to fit into a space-time box of a certain
size, and (ii) dense enough to contain at least two distinct candidate level-
(n&1) errors that are not too far apart. A candidate level-n error S
qualifies as a real level-n error if (iii) S is not big enough to contain two
smaller candidate level-n errors that are separated from each other by a
certain amount, and (iv) S is sufficiently isolated from the rest of E "En&1 .
Note that if condition (iii) fails to hold for a candidate level-n error S, then
S qualifies as a candidate level-(n+1) error.

In conjunction with these definitions, I will need some facts about E.
The first is that, for n>0, every point in E "En&1 belongs to a candidate
level-n error S. I can prove this by induction on n. As is often the case with
such proofs, things are made easier if I prove a little more. A candidate
level-n error S is called minimal if S contains precisely 2n points (it is easy
to see that a candidate level-n error cannot contain less than 2n points).
I will show inductively that every point in E "En&1 belongs to at least one
minimal candidate level-n error S. The case n=1 is an easy exercise that
is left for the reader.

For the inductive step, assume that there exists a space-time point
(x1 , t1) that is a member of E "En&1 for some n>1. By the inductive
hypothesis, (x1 , t1) belongs to a minimal candidate level-(n&1) error S1 .
The minimality implies that S1 consists of two disjoint minimal candidate
level-(n&2) errors that are (24Qn&2, 24U n&2)-linked. It follows that S1 fits
into a 26Qn&2_26U n&2 space-time box. It is easy to see from the defini-
tion that if any point in S1 is part of a real level-(n&1) error, then S1 itself
would be contained in a real level-(n&1) error. But S1 contains (x1 , t1)
and (x1 , t1) � En&1 , so S1 cannot be contained in a real level-(n&1) error.
Since S1 clearly satisfies condition (iii) for level-(n&1) errors, it follows

17A Reader's Guide to Gacs's ``Positive Rates'' Paper

that S1 fails to satisfy condition (iv). Thus, there exists a point (x2 , t2) #
E "En&1 such that (x2 , t2) � S1 , and such that (x2 , t2) and S1 are (24Qn&1,
24U n&1)-linked. For reasons that will become clear in the next paragraph,
we will consider a slightly different collection of choices for this point,
namely all points (x2 , t2) # E "En&1 such that (x2 , t2) � S1 and such that
(x2 , t2) and (x1 , t1) are (25Qn&1, 25U n&1)-linked. Since I assumed earlier
that Q�213 and U=128Q, and since S1 fits inside a 26Qn&2_26U n&2

space-time box, this increases the set of possible choices for the point
(x2 , t2). Apply the inductive hypothesis to such a point (x2 , t2) to find a
minimal candidate level-(n&1) error S2 containing (x2 , t2). As with S1 , we
know that S2 fits into a 26Qn&2_26U n&2 space-time box. Let S=S1 _ S2 .

I claim that S2 can be chosen so that S1 and S2 are disjoint. It is easy
to see that if this claim is true, then the set S is a minimal candidate level-n
error containing (x1 , t1), and we are done. In order to prove the claim, we
just need to choose the point (x2 , t2) so that it is far enough away from
(x1 , t1). If the set of possible choices for (x2 , t2) contains a point that is
(52Qn&2, 52U n&2) separated from (x1 , t1), then we let (x2 , t2) be that
point, and the size restrictions on S1 and S2 force them to be disjoint.
Otherwise, S fits inside a 104Qn&2_104U n&2 space-time box, and S is
(25Qn&1&104Qn&2, 25U n&1&104U n&2)-separated from the rest of E "En&1 .
Under my assumption about the sizes of Q and U, this would imply that
S fits into a Qn&1_U n&1 space-time box and is (24Qn&1, 24U n&1)-
separated from the rest of E "En&1 . Thus S would satisfy conditions (i) and
(iv) in the definition of level-(n&1) errors. Clearly, S satisfies condition
(iii), and since S contains S1 , it also satisfies condition (ii). So S would be
a real level-(n&1) error. As explained earlier, S1 cannot be part of a real
level-(n&1) error. This leaves us with the first possibility, which is that
(x2 , t2) can be chosen to be (52Qn&2, 52U n&2)-separated from (x1 , t1),
thereby giving us the desired disjointness and completing the inductive
proof.

The argument just given has an interesting consequence about the size
of a level-n error. First of all, after replacing n&1 by n, the argument shows
that a minimal candidate level-n error S1 fits into a 26Qn&1_26U n&1

space-time box. It further shows that if there is a point in E "En&1 that is
(52Qn&1, 52U n&1)-separated from at least one member of S1 , then that
point lies in a second minimal candidate level-n error S2 that is disjoint
from S1 , and S2 also fits into a 26Qn&1_26U n&1 space-time box. If it
also happens that S1 and S2 are (104Qn&1, 104U n&1)-separated but
(24Qn, 24U n)-linked, then conditions (iii) and (iv) prevent S1 (and S2)
from being a part of a real level-n error. Thus, if S1 is part of a real level-n
error S, any point in S"S1 must be (130Qn&1, 130U n&1)-linked with S1 .
We may therefore conclude that every level-n error S actually fits easily

18 Gray

into a 200Qn&1_200U n&1 space-time box. In particular, a level-1 error fits
into a 200_200 space-time box.

I need one more fact about level-n errors. For n�0, let =n denote the
level-n error rate, which is the probability that a given space-time box B of
size Qn_U n has nonempty intersection with some candidate level-n error.
Clearly =0==. To obtain an upper bound on =n , we first consider the event
that a given Qn_U n space-time box has nonempty intersection with at
least one candidate level-(n&1) error. Clearly, the probability of this event
is bounded above by QU=n&1 . Since a candidate level-n error must contain
at least two disjoint candidate level-(n&1) errors, the Kesten-Vandenberg
Inequality (see ref. 1) implies that =n�(QU=n&1)2. As a consequence,

=n�(QU)2n+1&2=2n
<(Q2U 2=)2n

for n>0

Thus, when =<(QU)&2, the candidate level-n errors in E become
extremely rare as n increases.

Based on these facts, a simply Borel�Cantelli argument shows that,
with probability 1, any given member of E belongs to a candidate level-n
error for only finitely many values of n, and so En ZE as nZ�, as long as
= is sufficiently small. I will summarize these results as:

Proposition 1. For n>0, every level-n error fits into a 200Qn&1_
200U n&1 space-time box, and if =n is the level-n error rate defined above,
then

=n�(Q2U 2=)2n

If =<(QU)&2, then with probability 1, every error belongs to a level-n
error for some n�0.

The current version of Gacs's construction does not contain a similar
decomposition of the error set explicitly. What corresponds to it is the
somewhat more sophisticated notion of a ``robust medium,'' and the
``simulation damage probability bound'' found in Gacs's Lemma 8.4. But
for our purposes here, the concept of level-n noise works just fine.

5.2. The Dynamics of the Local Structure and Flags Fields

The transition rules for the local structure fields depend on the value
of the Flags field, so it is best if I give the transition rules for Flags first.

19A Reader's Guide to Gacs's ``Positive Rates'' Paper

In order to do that, I will need some more notation and terminology.
Given a site x, let

R(x)=[x+1, x+2, x+3, x+4, x+5]

L(x)=[x&1, x&2, x&3, x&4, x&5]

Given a configuration !, I will now define the apparent colony of a cell
at x, to be denoted by C(x, !), or more frequently, by C(x) when the con-
figuration ! is clear from the context. If at least three of the sites in R(x)
have Addresses that are consistent with each other, then extrapolate from
those Address values to obtain an interval of Q cells that contains x and
is consistent with the three Addresses in R(x), and call this interval the
apparent colony C(x). If three such sites do not exist in R(x), then C(x)
does not exist. Here are three examples to help clarify this definition. If the
Addresses in R(x) are 0, 1, 29, 3, 81, then C(x) exists because the Address
values at x+1, x+2, x+4 are compatible with each other. In this case,
C(x) consists of the sites x&Q+1,..., x. If the Addresses in R(x) are 13, 14,
15, 16, 2, then C(x) is x&12,..., x&13+Q. And if the Addresses in R(x)
are 3, 4, 6, 5, 2, then C(x) does not exist, because no three of these sites
have compatible Address values.

I will say that there is inconsistency at x if one of the following four
conditions holds: (i) C(x) does not exist, or (ii) C(x) exists, but there are
at least three sites in L(x) & C(x) whose Address values are not consistent
with the positions of those sites relative to C(x), or (iii) there do not exist
three sites in R(x) with the same Age value, or (iv) there exist at least three
sites in R(x) with the same Age value a and at least three sites in
L(x) & C(x) whose Age value differs from a. Otherwise, there is consistency
at x. The main purpose of the transition rules in this section is to restore
consistency when damage is done to the system by level-1 noise. This pur-
pose is accomplished through a combination of majority vote procedures
involving the Address and Age fields. The Flag1 bit helps control these pro-
cedures. The Flag2 bit is merely a nuisance in this part of the discussion,
but I include it for the sake of completeness. I strongly recommend that
you ignore any mention of the Flag2 bit at this stage. It will only become
significant in Section 5.5.

The transition rules for Flags depend on the local structure fields, and
also on two particular bits in the Workspace field. I call these two bits
Workspace.Flag1 and Workspace.Flag2. The transition rules for these two
bits will be given in Section 5.5. The circumstances are quite rare under
which these two bits have any influence on the Flags field, so it is best not
to worry about them on first reading. In particular, you may safely ignore
condition (iii) in the following until you get to Section 5.5.

20 Gray

Here are the transition rules for Flag1:

0 � 1 if at least one of the following three conditions is satisfied:
(i) there is an inconsistency at x, or (ii) at least three sites in
R(x) & C(x) have Flag1 equal to 1, or (iii) at least three sites in
N(x) & C(x) have Workspace.Flag1 equal to 1

1 � 0 if conditions (i) and (iii) do not hold and the following con-
dition does hold: (a) no more than one site in R(x) & C(x) has
Flag1 equal to 1.

In all other cases, the value of Flag1 does not change. Conditions (i) and
(ii) imply that inconsistencies cause 1's, and that a block of three or more
1's grows towards the left at speed 3, until it reaches a site whose apparent
colony is disjoint from the block. We will see that this part of the rule is
important in one of the early stages of recovery from level-1 errors. Condi-
tion (iii) shows that the Flag1 field can get its value from the Workspace
field, but this condition does not play any significant role until Section 5.5.
Condition (a) shows how the Flag1 bit returns to 0 in a ``healthy'' colony.
This rule takes care of isolated errors in the Flag1 field, such as occur in
level-0 noise, and it also is important in the final stage of recovery from
level-1 errors, as described below.

I define the computed value of Flag1 at x to be the value given by the
rules in the preceding paragraph. This value plays a role in the transition
rules for Flag2, which are given here. It is best to ignore these rules until
you get to Section 5.5.

0 � 1 if at least one of the following four conditions is satisfied: (i)
at least four sites in L(x) & C(x) have Flag2 equal to 1, or (ii) the
computed value of Flag1 at x is 1 and at least four sites in L(x)
have Flag2 equal to 1, or (iii) C(x) does not exist and the com-
puted value of Age at x is divisible by 16, or (iv) at least three
sites in N(x) & C(x) have Workspace.Flag2 equal to 1

1 � 0 if conditions (iii) and (iv) do not hold and at least one of
the following two conditions does hold: (a) the computed value of
Flag1 at x is 0 and no site in L(x) & C(x) has Flag2 equal to 0,
or (b) the computed value of Flag1 at x is 1 and no site in L(x)
has Flag2 equal to 1.

The computed value of Flag2 at x is the value given by these rules. Condi-
tions (i) and (ii) imply that a block of 1's in the Flag2 field will spread to
the right at speed 2, but such a wave can only enter a new colony if the
Flag1 values allow it. Thus, the expansion is normally restricted within
colony boundaries. Conditions (iii) and (iv) are important in Section 5.5.

21A Reader's Guide to Gacs's ``Positive Rates'' Paper

Condition (a) shows how 1's in the Flag2 bits return to 0 within a ``healthy''
colony. Condition (b) is mostly intended for ``unhealthy'' colonies.

The transition rules for Address at a site x require majority votes of
the Address values at certain sites in N(x). For such votes, I follow the con-
vention that if the Address field at some site y is involved in a majority
vote that is being used to determine the new Address value at a site x, then
the Address value at y needs to be adjusted by adding x& y (mod Q)
before using it in the vote, to compensate for the position of y relative to x.
The transition rules for Age at a site x require majority votes of the Age
values at certain sites in N(x), but no adjustment is needed before such
votes are taken. However, whenever a majority Age value is determined,
I follow the convention that the result must be incremented by +1 (mod U)
before using it as the new value of the Age at x. In all cases, if the voting
does not produce a clear majority when a transition at x is being deter-
mined, then my convention is that outcome of the majority vote is defined
to be the current value at x. With these conventions in mind, it is now
possible to give identical statements for the transition rules of Address and
Age. Even though Flag2 plays a role here, it is safe to ignore it until
Section 5.5.

If C(x) exists and either the computed value of Flag1 at x is 0 or
the computed value of Flag2 at x is 1, take the majority vote in
R(x). (Note that, for the Address field, this will give a value that
matches the position of x in C(x).)

Otherwise, take the majority vote in L(x).

The computed values of Address and Age are the ones determined by these
rules. For errors that arise in the local structure or Flags fields due to
level-0 noise, it does not matter which of these two rules is in effect. Such
errors will be corrected immediately. In fact, a simpler type of majority
vote could have been used if we were only worried about level-0 noise. The
slightly complicated nature of the rules is necessary to handle level-1 noise
efficiently, as I will now explain.

Let S be a level-1 error. Recall that S must be contained in a 200_200
space-time box. This box can touch at most two colonies. For simplicity,
let us suppose that it touches exactly two colonies, which I call the
``damaged colonies.'' By definition, all other level-1 errors are at least
(24Q, 24U)-separated from S. Since I will show that the damage caused by
S is corrected within a space-time box of size 2Q_2U, we can assume that
the noise is restricted to level-0 outside of S. Under this assumption, the
computed values of all of the local structure fields are the same as in
the deterministic system, except in those cells that are influenced by the

22 Gray

damage in S. At any given time, I define the ``damage island'' to be the
smallest interval of cells whose computed Address and Age values don't
equal the values that they have at that same time in the deterministic
system. My main goal is to show that the damage island disappears. I will
also show that the Flags fields are returned to 0.

For the reader that is not interested in lots of detail at this stage, here
is the main idea. If there are any incorrect values of Address or Age in the
damage island, the resulting inconsistencies will cause the Flag1 bits in the
island to change to 1, due to conditions (i) and (ii) in the transition rules
for those bits. Once this happens, the local structure fields in the island are
determined by majority voting from the left, so that correct values of those
fields flow into the island from the undamaged colony on the left. The
damage cannot expand to affect the cells of the undamaged colony on the
right, for the following reasons: (1) the apparent colony of those cells
equals the real colony, so that (2) no inconsistencies arise in the
undamaged colony, implying that (3) the Flag1 bits in the undamaged
colony remain equal to 0, further implying that (4) their local structure
fields are determined by majority voting from the right. Since the island
shrinks at a steady rate on the left, and since its growth on the right is
bounded, the island soon disappears, as desired. If you can accept this
informal argument, you may want to skip ahead to the statement of
Proposition 2.

Throughout the following, I will talk about various ``waves'' in
describing the way in which certain values spread throughout the damaged
colonies. For example, a block of three 1's in the Flag1 bit can initiate a
leftward-moving wave of 1's, due to condition (ii) in the rules for Flag1. It
is easy to check that the front of this particular type of wave moves at
speed 3 in the absence of noise. Other types of waves have their own
characteristic speeds, and these speeds are important in the argument.
Since I need to worry about the influence of level-0 noise, I want to make
a general comment on how such noise affects the speeds of the various
types of waves. When a level-0 error interacts with the front of a wave, it
can slow it down a little. By definition, each level-0 error is restricted to at
most two neighboring sites, and all level-0 errors are at least (24, 24)-
separated from one another. Because of this sparsity, routine checking in
each case shows that the speed of a wave is reduced on the average by
much less than 1�4 cell per time step. I will not bother to give the details
here. In the future, I will sometimes refer to this kind of speed reduction as
a ``transient effect.''

Let me first show that the damage island cannot expand towards the
left, except for occasional temporary expansions due to level-0 noise or the
Flag2 bit. At the left end of the damage island, an inconsistency must exist.

23A Reader's Guide to Gacs's ``Positive Rates'' Paper

This inconsistency initiates a leftward-moving wave of 1's in the Flag1 field.
This wave moves at least at speed 2.75 in the presence of level-0 noise. If
we could ignore the influence of the Flag2 bit, then we could conclude that
the Address and Age fields in the cells to the left of the damage island
remain unaffected by the damage in the island, since the majority voting for
those cells will come from the left. In the next paragraph, I am going to
explain why the Flag2 bit does not change this picture significantly, except
to possibly reduce the various wave speeds by another 1�4 cell per time
step. I refer to this reduction as another ``transient effect.'' You may ignore
the next paragraph until you get to Section 5.5.

Initially, the Flag2 bits equal 0 in the cells that lie left of the damage
island, and those bits can only change to 1 due to conditions (iii) or (iv)
in the transition rules for Flag2. Condition (iii) concerns the influence of
Workspace.Flag2, and the transition rules for Workspace.Flag2 in Sec-
tion 5.5 make it impossible for that bit to have any influence in cells to the
left of the island when the noise is restricted to level-0, so I can safely ignore
condition (iii). Condition (iv) can only apply once every 16 time steps in
the cells to the left of the island. When this happens, only three cells can
be affected, and during the next three time steps, the 1's change back to 0's
and the local structure fields are repaired in those three cells. This argu-
ment shows that the computed values of the Flag2 bits remain 0 in all of
the cells to the left of the island during an overwhelming majority of the
time steps. It follows that the damage island cannot expand leftward in any
significant manner. Furthermore, as the left end of the damage island
erodes towards the right, the 1's in the Flag2 bit also get eroded away by
the 0's to the left of the island. The 0's advance at speed 1, except when
delayed by transient effects, so we may assume that the average speed is at
least 1�2.

It is a routine matter to check from the various transition rules that
in level-0 noise, the computed values of the Flag1 bits must remain equal
to 0 in the nearest undamaged colony on the right. The reason is that C(x)
coincides precisely with the undamaged colony itself for all x inside that
colony, thereby ensuring consistency at all such cells, even in the presence
of level-0 noise. This fact prevents the damage island from expanding
rightward beyond the left boundary of this colony. Therefore, I can restrict
my attention to the damaged colonies for the rest of the argument. Since
repairs cannot begin in earnest until after the last error in S occurs, I will
also restrict my attention to the time interval after that error.

Consider the leftmost cell in the damage island. Except for one special
situation that will be described below, there must be an inconsistency at
this cell, causing the computed value of Flag1 to equal 1 there. (As
explained earlier, we can initially assume that the computed Flag2 bits are

24 Gray

all 0 to the left of the island during most time steps, from which it follows
that the computed value of Flag2 is usually 0 in the leftmost cell in the
island.) As a result, the local structure fields in this cell are determined by
a majority vote from the left, causing them to change so that they are con-
sistent with the local structure fields outside the island. (Simultaneously,
the Flag2 bit becomes equal to its computed value, which is 0.) At least
one cell is repaired in this fashion during each time step, except during
delays caused by the transient effects. Taking such delays into account, it
is still true that the average repair rate is at least 1�2 cell per time step. To
put it another way, the left end of the island ``erodes'' at a speed that is at
least 1�2 (and this erosion includes changing 1's to 0's in the Flag2 bit).

The one exception occurs when the leftmost cell in the island happens
to be near the left end of its own apparent colony. In this case, it is possible
for the computed value of Flag1 bit to equal 0 in this cell, at least initially.
However, a little thought reveals that as long as the island covers much
less than Q cells, there must be an inconsistency somewhere within this
apparent colony. The nearest such inconsistency produces 1's that move
leftward, and those 1's eventually reach the left end of the island. Similar
waves of 1's are produced at every inconsistency in the island. Since these
waves move at a speed that is slightly less than 3 in the presence of level-0
noise, it is not hard to see that within a short period of time after the end
of S, the computed value of Flag1 equals 1 in every cell in the island that
lies near the left end of its own apparent colony. To estimate the length of
this ``short period,'' I note that during the time interval when S occurs, the
damage island can expand at most 800 cells to the right, even with the help
of level-0 noise (without noise, the damage can spread at speed 3, so the
speed is less than 4 with the noise). Thus, no leftward-moving wave of 1's
needs to cover more than 1000 cells. This fact limits the ``short period'' to
less than 500 time steps, during which the damage island might expand
another 2000 cells to the right. The inconsistency at the right end of the
island ensures that these extra 2000 cells also have Flag1 bits with com-
puted value equal to 1. Note that since Q�213, the damage island has size
less than Q�2 at the end of the 500 time steps.

After the 500 time steps, the erosion of the left end of the island
proceeds with an average speed that is at least 1�2 cell per time step. Since
the damage island was originally restricted to size 200, and since the left
end has been steadily eroding to the right, it takes at most 400 time steps
before the local structure fields of the left damaged colony are completely
repaired. From that point on, the damage island is strictly contained in the
damaged colony on the right. Also, the island can not have grown more
than 1600 cells at the right end during these 400 steps. So the size of the
island has remained below 3Q�4. It is easy to see that it takes at least

25A Reader's Guide to Gacs's ``Positive Rates'' Paper

Q&10 cells to form a block with no internal inconsistencies, so the argu-
ment given earlier shows that the left end of the island continues to erode
at speed 1�2. At most 200+Q cells can be damaged during the entire
recovery operation, so the island gets completely eroded within 200+500
+2(Q+200) time steps. Since I have assumed that Q�213 and U=128Q,
this is much less than U�32 time steps. All of the damage to the local struc-
ture fields has been repaired. With consistency restored thoughout the
damaged colonies, the Flag1 bits start changing back to 0's in a wave that
moves from the right at a speed that is at least 1.75 in the presence of
level-0 noise.

Because the above recovery operation is primarily concerned with the
local structure and Flags fields, it is possible that some residual errors
remain in the simulation structure fields that could cause delayed effects in
the Flags fields. But in the absence of further level-1 or higher errors, such
effects will not have any influence on the computed values of the local
structure fields. I will show in Section 5.4 that the simulation structure
fields in damaged colonies cannot be affected by a level-1 error in any
significant way for more than one colony work period, and that there is no
effect at all outside the damaged colonies. Furthermore, the transition rules
for Workspace.Flag1 and Workspace.Flag2, to be given in Section 5.5,
only allow those bits to equal 1 during a very specific time interval of
length 2Q in the colony work period. Because of this, it turns out that the
residual effects on the Flags field are restricted to at most U time units after
the first error in S. The following proposition summarizes the results about
level-1 error-correction in the local structure fields:

Proposition 2. Suppose the errors are restricted to level-1 noise.
Then for each level-1 error, there exists a space-time box of the form
[jQ, (j+2)Q)_[t, t+U�32), where j is an integer and t is a time, such
that for all points outside of the union of these boxes and the set E0 , the
local structure fields have the same values that they have in the deter-
ministic system. The same can be said for the Flags fields if the space-time
box is enlarged to [jQ, (j+2)Q)_[t, t+U).

Sections 11, 12, and 15 of Gacs's paper contain his version of the local
structure transition rules. Most of the verifications for these rules, which
constitute the analogue of Proposition 2, are found in Sections 13 and 14.

5.3. Self-Simulation

As I will explain in more detail in Section 5.5, the procedures
described in Section 5.2 cannot fix all of the disruptions that can occur with

26 Gray

level-2 and higher errors. Another idea is needed. The germ of this idea
goes back to Kurdyumov, but a lot of work was needed by Gacs to
actually implement it. It is briefly this: the system will have the capability
to simulate itself. The cells are organized into colonies of size Q. Each
colony will play the role of a single level-1 cell in a simulated level-1 cellular
automaton. The state of a simulated level-1 cell will be contained, bit by bit,
in the SimBit fields of the cells of the colony. At times that are multiples of
the work period U, the simulated states will change. It will be arranged so
that these changes follow the same transition rules that exist for the original
system. The resulting self-simulation will have an important consequence. As
I will explain in Sections 5.4 and 5.5, level-n noise will appear as level-(n&1)
noise to the simulated system. Furthermore, since the simulated system has
the same transition rules as the original, it will also be self-simulating,
thereby giving us a level-2 cellular automaton. This level-2 system will see
level-n noise as level-(n&2) noise. Continuing in this fashion, we obtain a
simulation hierarchy of increasingly reliable systems. The higher-level
systems will be able to help the lower-level systems correct large errors.

To completely describe how all of this works, it will take me the rest
of this article. In this subsection, I only want to explain how self-simulation
is possible in cellular automata. I will first give a detailed description of a
nontrivial cellular automaton that simulates itself, and then I will give a
less detailed description of the way in which Gacs implements self-simula-
tion in his model.

Self-simulation is trickier than it might sound at first. If you try to
define self-simulation procedures from the bottom up, you easily get into a
vicious cycle. For example, suppose you find that you need to add a proce-
dure at level-0 to make the self-simulation work. Then, of course, you now
have more to simulate at level-1. This may mean that you need to enlarge the
colony size, which in turn gives you even more to simulate. Fortunately, it
all works out.

The following explanation of self-simulation is partly based on a docu-
ment that was sent to me by Gacs. This is the one part of this introductory
paper that I felt uneasy about doing all by myself.

First, let's just talk generally about how to implement a simulation
that is not necessarily a self-simulation. Imagine that we have a deter-
ministic cellular automaton M0 that is supposed to simulate another deter-
ministic cellular automaton M1 . The state of a cell in M0 consists of only
four fields: two one-bit fields called SimBit and ProgramBit, and two other
fields called Workplace and Mailbox. The automaton M0 is subdivided
into colonies, and each colony of M0 simulates a single cell in M1 . To find
the state of a simulated cell in M1 , simply read off the bit string obtained
by putting all of the SimBits of the corresponding colony together in one

27A Reader's Guide to Gacs's ``Positive Rates'' Paper

string. The initial values of the SimBits are of course determined by the
initial configuration of M1 .

Taken together, the ProgramBits in a colony form a bit string, just
like the SimBits. This bit string is simply a ``look-up table'' for the trans-
ition rule of M1 . If the state of a cell in M1 is given by a bit string of length
n, and if M1 has range-5 interactions like the model I have been describing,
then such a look-up table will need 12n211n bits. This number is computed
as follows: Each ``entry'' in the table requires 12n bits, in order to list
twelve states: eleven states for the input to the transition function and one
state for the output. And there are 211n entries, corresponding to all
possible inputs. So a colony in M0 will need 12n211n sites to accomodate
this look-up table.

Note that only n sites are needed to represent the state of a cell in M1 ,
so most of the SimBit fields in a colony are not needed to represent the
states of the cells in M1 . This extra space can be used, for example, to
contain some special bit string that marks the boundaries of colonies in a
way that is independent of the colony size.

During each work period of a colony, three things must happen. First,
the colony must determine the states that are represented by it and its ten
neighboring colonies. It does this by gathering the relevant SimBits from
itself and its ten neighboring colonies, using the Mailbox fields, and then
distributing those bits into the Workspace fields of a predetermined set of
11n sites, at the rate of one bit per site. Then these bits get shifted one
spatial unit at a time, until they match an entry in the look-up table. Once
the match has been found, the new value for the simulated state is taken
from the look-up table and moved into the correct SimBit fields.

I imagine that many readers are unfamiliar with the manner in which
such procedures are actually implemented, so I will now give some extra
detail about how one might organize one of the procedures, namely the
first one, involving the Mailbox fields. First, we need to get the state being
simulated by a colony into the Mailbox fields. I need to do this in a way
that does not depend on the size of the colony, and yet is properly syn-
chronized. In particular, I want all of the colonies to do this at the same
time, and I want the Mailbox field to have a fixed size, no matter what I
am simulating. To synchronize things, I can use a small subfield of the
Workspace that I could call Signal. At any given time, the Signal field is
nonzero in only one cell per colony. I think of this one cell as actually con-
taining the signal, which moves cell by cell back and forth throughout the
colony. The signals in all of the colonies are synchronized. The Signal field
could consist of k bits, where k is some constant that is independent of the
colony size. This would allow a count to be kept of how many times the
signal has passed through the colony, with the work period ending once

28 Gray

the count has reached 2k. Certain operations within a cell can be triggered
when the signal passes through the cell, depending on the count.

In particular, when the signal first passes through a cell, this could
cause the cell to copy the Simbit into the Mailbox field. The Simbits would
then move one cell at a time, toward the intended neighbor colony. Due
to the way in which the initial copying is synchronized, each stream will
consist of Simbits alternating with empty spaces. In order to distinguish
empty space from real information, the Mailbox field should have two bits:
the first bit indicates with a 1 or 0 whether or not the field contains any
real information, and the second bit is the actual content; a 00 indicates an
empty space. These streams move until the leading Simbit reaches a
designated cell in the target colony. Then, one by one, the empty spaces
close up and the Simbits in the stream are copied into successive cells. After
the first bit of the stream, each subsequent bit can ``tell'' when it has
reached its target destination, because the next cell will have already
received its piece of mail.

In a similar fashion, each of the procedures in the simulation can be
broken down into a simple succession of copying and comparison opera-
tions in a few nested program loops, so that the transition function of M0

can be constructed in a way that is independent of the transition function
of M1 . By making use of special bit strings to mark certain special loca-
tions within each colony, as mentioned above, the transition function for
M0 can also be made independent of the colony size Q and work period U.
Therefore, the cellular automaton M0 will be able to simulate an arbitrary
cellular automaton M1 , as long as Q is large enough to accomodate the
look-up table for M1 and U is large enough to allow for the number of
time steps that it takes to complete one full step of the simulation. In order
for M0 to have the capacity to simulate itself, we merely need to make Q
and U sufficiently large to accomodate the transition function of M0 . The
vicious cycle mentioned earlier has been avoided, at least for the time being.

This is not the version of self-simulation used by Gacs, and it is also
not the one I have in mind for my simplified model. The problem is that
noise causes serious difficulties when look-up tables are used, because once
a few errors occur in the ProgramBit fields, the look-up table becomes
useless. Furthermore, even if we could find a way to maintain the integrity
of the look-up table, we would also have a problem when we tried to
simulate the local structure transition rules. Among other things, those
rules depend explicitly on the Address field, and it takes Q log2 Q bits to
list all of the possible values of the Address. This is larger than the colony
size, so a look-up table for such rules cannot possibly fit into a colony.

Fortunately, these difficulties can be overcome. Look-up tables are
highly inefficient for defining most procedures. For example, it would be

29A Reader's Guide to Gacs's ``Positive Rates'' Paper

ridiculous to use a look-up table to carry out a majority vote procedure
involving the Address or Age fields. It would be much better to use a short
sequence of copying and comparison operations. Implementing such things
efficiently is one of the reasons why programming languages were invented.
In Section 7.3 of his paper, Gacs introduces a programming language
designed specifically for defining the procedures needed in the transition
rules of his cellular automaton. Although I do not have space to give the
details, I will try to give you some idea how this programming language
solves our dilemma.

Let's go back to the general problem of simulating a cellular automaton
M1 by another cellular automaton M0 . The role of M0 will be as before,
but the implementation will be different. In particular, M0 will need to
include the local structure described in Section 5.2. Using Gacs's program-
ming language, write a program for the transition function of the cellular
automaton M1 . This program is a string of bits, and it will replace the
look-up table. Write the program, bit by bit, into the ProgramBit fields
of M0 . Now an ``interpreter'' is needed. This is a special program that can
be written in Gacs's (or any other) programming language. It takes as
its input the simulated states of 11 cells, together with the program string
for the transition function of M1 , and it gives as its output the output of
the transition function of M1 . The interpreter program is actually a set of
simple operations, such as copying and comparing, organized into various
programming loops, similar to the set of operations used before in conjunc-
tion with the look-up table. These operations are built into the transition
function of M0 so that they are carried out in each colony once during each
work period. As before, the transition function for M0 also implements the
various procedures that are required in order for colonies to communicate
their simulated states to each other. And also as before, this is done in a
way that is independent of the transition function of M1 , provided the
program for that transition function has no more than Q bits, so that it can
be written into the ProgramBits of a single colony.

Now comes the crucial step. The transition function of M0 can be
written as a bit string _ in Gacs's programming language. If _ contains less
than Q bits, then M0 will be able to simulate itself. The string _ contains
three separate pieces. First, it contains the bit string for the interpreter.
That part does not depend on the colony size or the work period. Second,
it contains strings that represent the transition rules for moving and storing
bits, both within and between colonies. As I explained earlier, this part
can be made independent of the colony size and work period, but we will
soon see that there is no longer any need to do so, as long as the depen-
dence is ``mild'' in a certain sense. The third part contains the transition
rules for the local structure fields. Clearly, this part does depend on the

30 Gray

colony size and work period. As with the second part, this dependence is
mild.

In order to explain what I mean by mild dependence, I will give a
simple illustrative example. Consider a simple majority vote involving the
simulated Address fields of five neighboring colonies. This can be carried
out by first copying the five Address values into locations in the Work-
spaces of an interval of cells, and then doing a series of bitwise comparisons.
An efficient program for such a procedure involves certain constants. These
are bit strings that are used to specify logistical details such as the precise
location for writing the Address fields of the neighboring colonies, and the
precise time during the work period when the procedure should be initiated.
The bit strings for these constants contain some small multiple of log2 Q or
log2 U bits. They make up the bulk of the program string for the proce-
dure. The rest of this string contains a few copying and comparison instruc-
tions, organized into some program loops. It should therefore be plausible
to you that the length of the program string for the majority vote operation
is bounded above by a log2(QU) bits, where a is a constant that does not
depend on Q or U. This is what I mean by mild dependence.

All of the transition rules described in Section 5.2 have this kind of
dependence, as will the further rules described in Sections 5.4 and 5.5.
And even for his more complicated model, Gacs proves in Sections 7.3
and 7.4 of his paper that the string _ is bounded above in length by
a+b log2(QU), where a and b are finite constants that do not depend on
Q and U. In my simple version of the model, I have set U=128Q. As I will
explain in Section 5.4, this choice allows enough time during a work period
so that the program represented by _ can actually be implemented, at least
when Q is sufficiently large. Thus, if Q>>log2 Q, there is enough space in
a colony to contain a bit-by-bit copy of _, and enough time during the
work period for a simulation step to be completed. In short, our enhanced
version of M0 can simulate itself if Q is sufficiently large.

I have described how to eliminate the vicious cycle involving the
colony size. But there is still one remaining difficulty. How do we maintain
the integrity of the ProgramBit field? This is done by ``hard-wiring'' the
program, as I will now explain. For simplicity, assume that the bits in
the state of a cell are arranged so that ProgramBit is the first bit and the
Address field is the next log2 Q bits. Modify the transition function of M0

so that near the beginning of each colony work period, the following proce-
dure is carried out within each colony: (i) determine the simulated Address
of the colony, as given by the SimBits in the cells with Addresses 1 through
log2 Q; (ii) determine the value of the ProgramBit in the cell whose
Address matches the quantity found in the first step; and (iii) write that
ProgramBit value into the SimBit of the cell whose Address is 0. Call this

31A Reader's Guide to Gacs's ``Positive Rates'' Paper

modified cellular automaton M $0 , and let _$ be the bit string that represents
the transition function of M $0 . Determine the initial configuration for M0

that causes M0 to simulate M $0 . In particular, let the initial values of the
ProgramBits be given by _$. This can be done if Q is sufficiently large,
because _$ is not significantly larger than _. Now let M $0 start with this
same initial configuration. Note that because of the way in which the first
SimBit of each colony is overwritten at the beginning of each colony work
period, this choice makes M $0 automatically simulate a copy of itself, with
this same initial configuration. Project the resulting time evolution of M $0
onto the configuration space that is obtained by removing the ProgramBit
from each cell, and let M be the resulting dynamical system. Generally
speaking, censoring part of the state space of a cellular automaton in this
manner does not give you another cellular automaton, at least not with the
same interaction range. But in this case, the ProgramBit of each cell is a
function of the Address of that cell. It follows that M is a cellular
automaton with the same interaction neighborhood as M $0 . Furthermore,
M simulates the specially chosen time evolution of M $0 , so it simulates
itself.

Unlike M0 , the cellular automaton M is not capable of simulating a
wide variety of cellular automata. But it agrees with M0 insofar as the
transitions of the local structure fields are concerned, and it simulates itself,
without using the ProgramBit field. It is able to carry out this self-simula-
tion by relying on the integrity of the local structure fields.

Proposition 3. Transition rules can be defined for the simulation
structure fields so that the deterministic cellular automaton simulates itself,
using the colonies as level-1 cells, and using the work period as the level-1
time unit. Included in the transition function of this cellular automaton
are all of the local structure transition rules defined earlier. The colonies
involved in the simulation are defined by the Address fields, and the work
period times for the colonies are defined by the Age fields.

5.4. The Dynamics of the Simulation Structure

Most of the transition rules for simulation structure fields are implicitly
defined by the description of self-simulation. The SimBit fields contain the
bits of the simulated state, and copies of these bits are passed around by
way of the Mailbox fields, so that colonies can interact with other colonies
within the level-1 interaction neighborhood. The Workspace fields store
these bits once they arrive at their intended destinations. So I will be far

32 Gray

less explicit with the transition rules for the simulation structure fields than
I was for the local structure fields. Mainly, I will concentrate on details that
are needed to make the simulation structure resistant to level-1 noise.

However, before I concern myself with error-correction, there are two
special rules that I want to introduce. The first special rule concerns the
Mailbox field at a site x. It demands that all of the Mailbox bits at x
change to 0 if the computed value of Flag1 at x equals 1. This rule prevents
information from passing through blocks of cells where extensive error-
correction is going on. It will play an important role in Section 5.5. The
second special rule has a similar purpose. It involves all of the simulation
structure fields. It demands that all of the simulation structure bits at x
change to 0 if the computed value of Flag1 equals 1 at x and the computed
value of Address at x differs from the current value of Address at x.

For the rest of this section, I will explain how the effects of level-0 and
level-1 noise are corrected in the simulation structure fields. I will also
define the initial values of the SimBit fields. (The initial values of the
Mailbox and Workspace fields were defined earlier to be 0.) To take care
of level-0 noise, I use a five-fold redundancy. For example, recall that the
SimBit field contains four extra bits, in addition to the primary SimBit.
These secondary bits are backup copies of the primary SimBits of the cells
at x&2, x&1, x+1, x+2. In turn, those four sites contain backup copies
of the primary SimBit at x. At each time step, the five copies of a given bit
are replaced by their majority value. In this way, a level-0 error has no real
effect on the values stored in the SimBit fields.

I now describe the initial values of the SimBits. As described in Sec-
tion 5.3, the primary SimBits in a colony are supposed to represent the
individual bits of the state of a single level-1 cell, so the colony size Q needs
to be larger than K, which is the number of bits in a state. I will assume,
in fact, that Q�2K, so that not all of the SimBits are needed to represent
the state of a level-1 cell. Those SimBits that are needed for such a
representation will be placed in the colony so as not to be near the colony
boundaries. Their initial values are chosen so that the initial state of the
level-1 system is the same as the initial state of the level-0 system, with the
positioning of the level-1 origin being chosen arbitrarily. In this fashion, all
of the initial values of the primary SimBits are determined, except for those
that happen to represent the simulated level-1 SimBits. For these, a simple
recursion is required. The secondary SimBits are determined by the condi-
tion that they agree with the corresponding primary SimBits.

The Mailbox and Workspace fields involve the same kind of redundancy
that was used in the SimBit field. For every bit stored in the Workspace field
at x, there are backup copies in the Workspace fields at x&2, x&1, x+1,
x+2. And whenever a bit is passed through the Mailbox fields, there are

33A Reader's Guide to Gacs's ``Positive Rates'' Paper

four backup bits moving in parallel at neighboring sites. Majority voting
takes place at every time step. And finally, when other types of procedures
are carried out, in conjunction with the self-simulation, those procedures
are also carried out with the same kind of redundancy. All of this can be
organized so that the level-0 noise E0 has no effect on the simulation struc-
ture fields at points (x, t) � E0 .

In addition to the spatial redundancy described in the preceding
paragraphs, I also need some temporal redundancy during the colony work
period. I divide this work period into 5 stages. The first three stages are
comprised of U�4 time units each, and the remaining two stages contain
U�8 time units each. Each stage is further divided equally into two parts,
an ``active period,'' which constitutes the first half of the stage, and a ``rest
period,'' which constitutes the remaining half. In the absence of noise, no
transitions take place in the simulation structure fields during rest periods.

At the beginning of the active part of the first stage, all of the bits in
the Mailbox and Workspace fields are set equal to 0. This procedure is also
repeated at the beginning of the active parts of the other stages, except in
those parts of the Workspace field that store necessary information
gathered during earlier stages. The first three stages are the ``information-
gathering'' stages. During each of them, the colony gets the simulated states
from the five nearest colonies on either side, by way of the Mailbox fields.
I have allowed enough time for this to take place, since the active period
of each of these stages contains U�8=16Q time units. Information gathered
during separate stages is stored in separate locations of the Workspace
fields. The fourth stage is the ``trickle-down'' stage. It is only during the first
2Q time steps of this stage that the Workspace.Flag1 and Workspace.Flag2
bits are allowed to equal 1. Further detail about the trickle-down stage will
be given in Section 5.5. The fifth stage is the ``update'' stage. During it,
three things happen: (i) bitwise majority votes are taken among the three
sets of information that were gathered during the first three stages, (ii)
based on the outcomes of these majority votes, the simulation of the transi-
tion function takes place, and (iii) the resulting updated simulated state of
the colony is distributed bit by bit into the Workspace fields of the cells of
the colony. At the beginning of the next work period, all of the SimBit
fields are updated, so that they contain this new state. Gacs proves in
Sections 7.3 and 7.4 of his paper that no more than 3Q+a log2 Q+b time
units are required for the procedures of this last stage, where a, b are
constants that do not depend on Q or U. Since the active period of the fifth
stage contains U�16=8Q time units, there is enough time for the proce-
dures of the fifth stage to be completed if Q is sufficiently large.

There is one more special procedure that occurs near the end of the
active part of the third stage. This procedure can affect the primary SimBits

34 Gray

at the cells whose computed Address values are 3 and Q&3. It is impor-
tant for initiating trickle-down, as explained further in Section 5.5. On a
first reading, you may skip this paragraph. At the end of the third stage,
all of the information has been gathered that is needed for computing the
level-1 transition. In particular, there is enough information to determine
the computed values of the level-1 bits Flag1 and Flag2 in the colony.
I will call these computed level-1 bits F1 and F2 respectively. Before the
active part of the third stage is completed, I want to change the primary
SimBit to F1 at the cell whose computed Address is Q&3, and I want to
change the primary SimBit to F2 at the cell whose computed Address is 3.
For redundancy, the corresponding secondary SimBits are also changed
according to these rules. In this fashion, information about the level-1
Flags bits is available to the cells near the ends of the colony before the
start of the trickle-down stage. Note that this procedure does not interfere
with the simulation, because I have arranged things so that these particular
SimBits are not needed in the representation of simulated states.

I will now show how level-1 errors are corrected in the simulation
structure fields. I will assume that transition rules have been defined for the
simulation structure fields so that the colony work period operates as
described in the preceding paragraphs, even in the presence of level-0 noise.
Recall that a level-1 error fits into a 200_200 space-time box, and that its
effects on the local structure fields are limited to two colonies, during a
time period of at most U�32. This time period can touch at most one of the
active stages of a colony work period. Outside of the two damaged
colonies, the computed values of the local structure and Flags fields are
unaffected. And the simulation structure fields of the undamaged colonies
can only be affected by possibly incorrect information that flows in through
the Mailbox fields. In fact, since at most one of the three information-
gathering stages can be disrupted by a level-1 error, the majority vote taken
during the fifth stage ensures that the level-1 transitions in undamaged
colonies will be based on correct information about the states of other
undamaged colonies. Possibly incorrect information about the states of the
damaged colonies is treated at level-1 in the same way that a level-0 error
is handled in the original level-0 system. It follows that correct level-1
transitions will be made in the undamaged colonies.

What about the simulation structure fields of the damaged colonies?
Because of the way in which the Mailbox and Workspace fields are wiped
clean at the beginning of each stage, it is not hard to see that the only last-
ing effects of the level-1 error are in the SimBit fields. At the beginning of
the colony work period immediately following the onset of the level-1
error, the SimBit fields of the damaged colonies might represent incorrect
states. But in the level-1 simulation, this is treated just like a level-0 error

35A Reader's Guide to Gacs's ``Positive Rates'' Paper

in the original system. It will be corrected in these colonies at the end of
that same work period. Thus we have the following result:

Proposition 4. Suppose the errors are restricted to level-1 noise.
Then for each level-0 error, there exists a space-time box of the form
[x, x+1]_[t, t], and for each level-1 error, there exists a space-time box
of the form

[jQ, (j+2) Q)_(kU, (k+2) U)

where j and k are integers, such that for all space-time points outside of the
union of these boxes, the simulation structure fields have the same value as
they would in the deterministic system.

Note that the space-time box in the proposition contains exactly one
time value that is an integral multiple of U. Thus, the simulated level-1
system corrects level-1 errors at least as well as the level-0 system corrects
level-0 errors. Since level-1 errors are much rarer on the time and space
scale of the level-1 system than level-0 errors are in the original system
(when the noise rate = is sufficiently small), we can conclude that the level-1
system is more reliable in the presence of level-1 noise than the original
system is in the presence of level-0 noise.

5.5. Trickle-Down of the Flags Field

Up to this point, I have described a system that is resistant to the
damage done by level-1 noise. In the presence of such noise, this system
behaves very much like the corresponding deterministic system. Once I
define the transition rules for the two bits Workspace.Flag1 and Work-
space.Flag2, I claim that the system will also be resistant to level-k noise
for all k. This result is stated in Proposition 5.

Here is some terminology that will be useful in describing some of the
problems that can be created by higher level errors. A maximal interval of
cells that all have the same apparent colony and the same computed Age
value is called a level-1 cell if it contains Q cells. Otherwise, such an inter-
val contains less than Q cells and is called a partial level-1 cell. A full or
partial level-1 cell is aligned at time t if its left endpoint is at a site x with
x=0 (mod Q) and if the common computed value of Age in the level-1 cell
equals t (mod U). It is misaligned otherwise. Two full or partial level-1 cells
are relatively aligned if the locations of their left endpoints differ by an
integer multiple of Q and if they have the same computed Age values. They
are relatively misaligned otherwise. Similar terminology applies to higher

36 Gray

level cells. For example, a level-2 cell consists of Q relatively aligned level-1
cells, each having the same level-1 apparent colony.

Level-1 errors cannot create misaligned level-1 cells. But a level-2 or
higher error can destroy the colony organization in a large region, and
then place one or more misaligned level-1 cells into the resulting gap. Such
disruptions will not always be corrected by the transition rules of the local
structure fields at level-0. Trickle-down is a mechanism that allows the
level-1 and higher simulated systems to get involved.

The proof of Proposition 5 is an induction, involving the various levels
of the simulation hierarchy. This is one of the places where things work out
better with Gacs's version of the model. In his version, relatively misaligned
level-1 cells are able to communicate with one another. This allows the
simulation hierarchy to continue functioning, even when higher level errors
create intervals of misalignment. In my version, relatively misaligned level-1
cells are prevented from communicating with each other, because the
inevitable presence of an inconsistency between them produces an interval
of 1's in the Flag1 bit. (Recall from Section 5.4 that 1's in the Flag1 bit
cause the Mailbox field to get erased.) This is actually the way it was done
in Gacs's 1986 version. The reason I did not follow Gacs's current approach
is that it would have made the transition rules more complicated. Either
way, I would have had to leave out some of the details. Nevertheless, I will
explain all of the key ideas, and I will make it clear where I am leaving
things out. There is a summary at the end that you might find helpful when
the going gets tough.

I wish to show inductively that the damage done by a level-k error S
to the level-0 local structure fields is limited to a space-time box of size
2Qk_U k�32. The case k=1 was done in Section 5.2. By reasoning as I did
there, I can assume that the noise is restricted to level-(k&1) outside of S,
since all other level-k or higher errors are too far away to have an effect.

To simplify the discussion, I will restrict my attention to k=3. For
this case, the inductive hypothesis is the following: if the noise is restricted
to level-2, then all damage to the level-0 local structure fields is limited to
a collection of space-time boxes, where the sizes of the boxes depend on the
levels of the errors that are associated with them. In particular, the level-2
errors are associated with boxes of size 2Q2_U 2�32.

To begin the argument, I define the damage island associated with S.
At any given time, it is the smallest interval that contains all cells where the
level-0 local structure fields have computed values that are different from
what they would be if S were removed. My main goal is to explain how
this damage island disappears, just as I did in the case k=1. Roughly
speaking, the reasoning will be the same. I will argue that the left end of
the island moves to the right at some minimal positive average speed, and

37A Reader's Guide to Gacs's ``Positive Rates'' Paper

that the right end of the island stops moving near the left end of an
undamaged level-3 cell.

There are two main reasons why this argument doesn't work as it
stands. The first is that the damage island can be quite large, several
hundred times Q2. Part of the argument in Section 5.2 relied on the island
being smaller than size Q. This problem affects the erosion at the left end
of the island. The other problem involves the right end. It is true that the
right end gets ``stuck'' at the left boundary of a level-3 cell, since the Flag1
bits will normally be 0 within the level-3 cell, even if the damage island lies
immediately to its left. But a few well-placed level-1 or level-2 errors can
get the right end ``unstuck.'' There are a few other minor difficulties, such
as occasional growth at the left end of the island due to level-2 noise, but
these are not very serious. Once you understand how the two main
problems are solved, you understand the heart of the proof.

The problem of the left end is the easier of the two. Typically, this end
moves steadily to the right until it reaches the left end of a level-1 cell.
Since the Flag1 bits can equal 0 in the underlying level-0 cells, the erosion
might stop. Trickle-down gets it going again, as I will now explain.

For the moment, let me assume that the level-1 cell at the left end is
not part of a level-2 cell in the island. Because of the inconsistency at the
left end, there must be an interval of 1's in the Flag1 bits of several cells
immediately to the left of the island. These 1's prevent any information
from passing between the inside and outside of the island, due to the
special transition rules for Mailbox introduced in Section 5.4. This situation
forces a level-1 inconsistency in the level-1 cell at the left end, causing the
level-1 Flag1 bit in that cell to change to 1. As I will explain in more detail
when I give the transition rules for Workspace.Flag1, this change even-
tually causes 1's to flow into the level-0 Flag1 bits of all of the underlying
level-0 cells. (This kind transfer of a Flags bit from one level of the simula-
tion hierarchy to a lower level is what I am calling ``trickle-down.'') When
these level-0 1's reach the left end of the island, the erosion starts up again.
This procedure occurs once every U time steps, during the trickle-down
stage of the work periods of the level-1 cells, and it lasts long enough to
move the left end of the island at least one full level-1 cell to the right.
There are occasional reversals, due to level-1 errors, which can occur once
every 24 work periods, and due to level-2 errors, which can occur once
every 24U work periods. Trickle-down of the Flag2 bit can also cause
delays, but only once every 16 work periods. I claim that such delays can
be considered ``transient effects,'' similar to the ones that were discussed in
Section 5.2. They are not enough to significantly slow the steady erosion at
the left end. (This is one of the places where I am going to skip the details.)
In spite of the delays, the erosion advances at an average speed that is at

38 Gray

least Q�2 level-0 cells in every U time steps, or 1�2 level-1 cell per level-1
time unit.

Now what happens if the left end of the island coincides with the left
end of a level-2 cell? Such a high degree of organization within the island
can prevent the level-1 Flag1 bits from changing to 1's. But unless this
level-2 cell is part of a full level-3 cell, its level-2 Flag1 bit will eventually
change to 1. Because of the simulation hierarchy, which operates at least at
level-1 inside the level-2 cell, this value trickles down to the underlying
level-1 cells, after which it trickles down to level-0. As a result, the erosion
of the left end continues. (There are some simple details here that need
to be checked concerning the coordination of the trickle-down at various
levels.) After taking into account the transient effects of the Flag2 bit at
various levels and also the level-2 noise, it can be shown that this multi-
level trickle-down is sufficient to cause the left end of the island to move
at least Q2�2 cells to the right every U 2 time steps, on the average. Thus,
at the scale of level-2, the left end erodes at an average speed of at least 1�2
cell per time step. This behavior is analogous to what happened at level-0
in the proof of Proposition 2. And just as in that proof, I do not need to
worry about the possibility that a level-3 cell stops the motion of the left
end, since the island will never be able to grow large enough to
accomodate such a cell. As far as the left end of the island is concerned, the
argument is finished. I have left out some parts, but I ask you to believe
that I have not hidden anything important.

Note that the erosion of the left end of the island can be much faster
than my lower bound. If the cells in the island are not highly organized, the
erosion can be just as fast as it was in the proof of Proposition 5.2. If this
is the case, then my problem with the right end of the island is not very
serious. The presence of undamaged level-1 cells outside of the island slows
the movement of the right end enough so that I can be sure that the left
end catches up with it. For this reason, I can assume in my discussion
below that the cells in the colony are fairly well organized. (In a complete
proof, I would need to be more precise about this point.)

The problem of the right end of the island is a little bit tricky. As I
said earlier, once the right end reaches an undamaged level-3 cell, it is
possible for level-1 and level-2 errors to cause the island to expand further
to the right. I will use trickle-down of the Flag2 bit to keep the island from
moving more than two level-2 cells beyond the left boundary of the level-3
cell. Once I accomplish this, the argument is finished.

Here is the picture I have in mind. Suppose the right end of the island
is positioned precisely at the left boundary of an undamaged level-3 cell.
Further suppose that there are several relatively aligned level-2 cells at the
right end of the island. The rightmost one of these cells may be partial, and

39A Reader's Guide to Gacs's ``Positive Rates'' Paper

for simplicity, I will assume that it is partial. Finally, suppose that a level-2
error occurs in the level-2 cell that lies immediately to the right of the
island. If 1's in the level-1 Flag1 bit spread throughout this level-2 cell, the
partial level-2 cell in the island may be able to grow into a full level-2 cell.
Depending on the positioning of the error, further growth of the island is
possible, as much as two full level-2 cells. After 24U 2 time steps, another
level-2 error could cause a similar expansion of one or two level-2 cells.
Before long, the island could expand far enough so the level-3 cell no
longer acts as a deterrent to further expansion. Before this can happen,
I need to reverse the motion of the right end of the island and restore the
left end of the level-3 cell. This is the reason for Flag2.

Consider the rightmost three full level-2 cells in the island. The special
transition rule for Mailbox prevents any information from passing through
the partial level-2 cell at the extreme right end of the island, so these three
full level-2 cells receive no communication from outside of the island. As a
result, the level-2 apparent colony of these cells does not exist. If the level-2
Age in these cells is divisible by 16, condition (iii) in the transition rule for
Flag2 is satisfied at level-2, causing the level-2 Flag2 bit in these cells to
become 1. This value trickles down to level-0. (I will give more detail about
this when I define the transition rules for Workspace.Flag2.) At the same
time, there is trickle-down in the Flag1 bit, due to the level-2 inconsistency
at the right end of the island. Because of the way in which the Flag2 bit
reverses the direction of error-correction, the right end of the island moves
towards the left. I have arranged things so that it moves left two full level-2
cells during the trickle-down stage of the work period of the level-2 cells.
Since this procedure occurs every 16U 2 time steps, and since level-2 errors
can only occur once every 24U 2 time steps, the direction-reversal is just
enough to undo any expansion of the island that might be caused by
level-2 errors. Similar things happen at level-1, to reverse damage done by
level-1 errors. In this way, the island is not allowed to expand very far
beyond the left end of the level-3 cell. Therefore, the left end of the island
catches the right end, and the island eventually erodes away completely. As
order is restored to the local structure at level-0, the simulation hierarchy
makes the same thing happen at higher levels. I claim that the island is
eliminated within U 3�32 time units, and that the level-1 and level-2
organization is restored within another U 3�32 time units. Residual effects in
the simulation structure and Flags fields are eliminated in a manner that is
similar to what happened in the proof of Proposition 2.

Note that in this argument, we do not need to worry that a 1 in the
Flag1 bit might trickle down from level-3 or higher inside the level-3 cell.
Since the damage island is eliminated quickly on the time scale of level-3,
the damage from S is treated like a level-0 error in the level-3 simulation.

40 Gray

Thus, it cannot cause the level-3 Flag1 bit to change to 1 in the level-3 cell.
And this damage is ``invisibile'' at higher levels.

I have left out a lot of details in this argument. Some of the strange
features in my transition rules are necessary because of these details. But
they should not detract from the main ideas, which are explained above.
There are many different ways to implement those main ideas. Gacs's
model is one of those ways, my version is another.

Before I state Proposition 5.5, I will provide further details about the
trickle-down procedures, including the transition rules for Workspace.
Flag1 and Workspace.Flag2. You may want to skip these details on a first
reading. Here are the transition rules for Workspace.Flag1:

0 � 1 if all three of the following conditions hold: (i) the com-
puted value of Address at x is in the interval [Q&5, Q&1],
and (ii) the computed value of Age at x is in the interval
[3U�4, 3U�4+2Q), and (iii) the computed value of SimBit at the
site (x&A(x))+(Q&3) is 1, where A(x) is computed value of
Address at x

1 � 0 if at least one of conditions (i), (ii), or (iii) fails.

The first two conditions say that this bit can normally be 1 only in the
rightmost 5 cells of a colony, and only during the first 2Q time steps of the
trickle-down stage. Assuming the computed values of Address indicate the
correct position within the colony, the site referred to in condition (iii) has
computed Address Q&3. According to the special transition rules for
SimBit in Section 5.4, condition (iii) typically holds after the third stage of
the colony work period if the level-1 computed value of Flag1 is going to
be 1 at the end of the work period. When all three conditions hold, the
Workspace.Flag1 bits in the five cells at the right end of a colony change
to 1's, and immediately thereafter, the corresponding Flag1 bits change to
1's, thereby initiating a leftward-moving wave of 1's that moves throughout
the colony. This trickle-down process gets ``turned off '' after 2Q time steps.
If the colony is still intact after that time, the Flag1 bits change back to 0's
in a leftward-moving wave that starts at the right end.

Here are the transition rules for Workspace.Flag2.

0 � 1 if all four of the following conditions hold: (i) the computed
value of Address at x is in the interval [0, 4], and (ii) the com-
puted value of Age at x is in the interval [3U�4, 3U�4+2Q), and
(iii) the computed value of SimBit at the site x&A(x)+3 is 1,
where A(x) is the computed value of Address at x, and (iv) the
computed value of Flag1 at x is 0

1 � 0 if at least one of conditions (i), (ii), (iii), or (iv) fails.

41A Reader's Guide to Gacs's ``Positive Rates'' Paper

Note the similarities and differences between these rules and the ones for
Workspace.Flag1. The Workspace.Flag2 bits are only allowed to be 1 near
the left end of the colony, rather than at the right end. Condition (ii) and
(iii) are the same, except that the site involved in (iii) has computed
Address value equal to 3. According to the special transition rules for
SimBit in Section 5.4, this condition for Flag2 typically holds after the
third stage of a colony work period if the level-1 computed value of Flag2
is going to be 1 at the end of the work period. Condition (iv) has no
analogue in the transition rules for Workspace.Flag1. The details of these
rules have been chosen so that the trickle-down can be properly coor-
dinated between various colonies. When all four conditions hold, a process
is set in motion that is similar to what happens with Flag1, except that the
Flag2 process starts at the left end of the colony. Both Flag1 and Flag2
trickle-down can occur simultaneously, as shown by the discussion later.

To help you understand these rules, let me describe a typical example
of trickle-down. Consider a level-1 cell whose computed level-1 Flag1 and
Flag2 bits are both equal to 1. According to special procedures that were
introduced in Section 5.4, this information is stored near the ends of the
level-1 cell, during the third stage of the work period. At the beginning of
the trickle-down stage, the Workspace.Flag2 bits change to 1 in the five
level-0 cells at the left end of the level-1 cell, and the Workspace.Flag1 bits
change to 1 in the five level-0 cells at the right end of the level-1 cell, as
specified in the transition rules for Workspace.Flag1 and Workspace.Flag2.
Immediately thereafter, a block of five 1's appears in the Flag2 bits at the
left end of the level-1 cell, and a block of five 1's appears in the Flag1 bits
at the right end. These blocks initiate waves that travel into the level-1 cell
from opposite directions. The Flag1 wave is a little faster, so it covers the
level-1 cell before the Flag2 wave does. When the Flag1 wave reaches the
left end of the level-1 cell, the Workspace.Flag2 bits there change back to 0,
because of condition (iv) above. The block of 1's in the Flag2 bit begins to
slowly erode at the left end. This block grows faster at the right end than
it erodes at the left, so it continues to grow in length for a while, at least
until it reaches the right end of the level-1 cell.

Now suppose that this type of trickle-down occurs simultaneously in
three consecutive level-1 cells. The presence of 1's in the Flag1 bit allows
the blocks of 1's in the Flag2 bit to cross from one level-1 cell to the next.
It is not hard to see that the Flag2 blocks therefore merge at some point,
covering at least two of the three level-cells. This single large block con-
tinues to grow in size as it drifts to the right. If these three level-1 cells are
at the right end of a damage island (as was the case in the proof of
Proposition 5), then the Flag2 block will eventually move beyond the right
end of the island. After that, majority voting from the right will cause the

42 Gray

right end of the island to drift to the left, as described earlier. The timing
is such that two new level-1 cells are created. These new cells are aligned
with the level-1 cells outside of the island. Initially, the simulation structure
fields in these new cells are blank, ensuring that the Flags fields return to
value 0 after a short time period. Assuming that these cells lie at the left
end of a level-2 cell (as they do in the proof), the blank SimBit fields will
be corrected after one work period, by way of the level-1 simulation.

This example only illustrates trickle-down from level-1. The proof of
Proposition 5 requires trickle-down from all levels. The handling of newly
created colonies gets a little tricky when trickle-down occurs at multiple
levels, especially when it involves the Flag2 bit. But I have worked out the
details for myself. You will have to trust me here.

Proposition 5. For k�0, each level-k error can be enclosed in a
space-time box of the form [jQk, (j+2) Qk)_[t, t+U k�16), where j is an
integer, such that outside of the union over k of these boxes, the level-n
Address fields agree with their initial values for all n�0.

The rest is easy. Proposition 1 implies that, for small =>0, most
space-time points are not in any of the boxes described in Proposition 5. So
the initial values of the Address fields are preserved with high probability
for all time, as desired.

Summary. The above argument is supposed to show how the
system is able to distinguish a finite island (created by errors) from the
surrounding ``sea.'' The key point is that all interfaces between the sea and
an island tend to drift right, at an average rate that depends on the level
of colony organization on the right side of the interface. Because an island
is finite in size, its internal colony organization breaks down at some level.
Trickle-down of the Flag1 bit communicates any high-level lack of
organization to level-0. Within the sea, the colonies are organized to an
arbitrarily high degree, so trickle-down does not take place as often. As a
result, the ``sea-island'' interface drifts to the right faster than the ``island-
sea'' interface. The difference in speeds is very slight if the island is large,
so some islands survive a very long time. But islands of similar size are far
enough apart so that they are eliminated before they can interact with each
other. This is the reason that the colony organization in the sea is preserved
at all levels. When a large island interacts with a smaller one on its left, the
effect is not significant. When a large island interacts with a smaller one on
its right, the effect is counteracted by trickle-down of the Flag2 bit.

It is interesting to note that the size of the noise rate = plays very little
role in the argument. It only enters into the proof of Proposition 1.

43A Reader's Guide to Gacs's ``Positive Rates'' Paper

A similar statement can be made about Gacs's version. I mention this fact
because it helps illustrate the high degree of robustness that is generally
present in Gacs's counterexample to the Positive Rates Conjecture.

ACKNOWLEDGMENTS

I wish to thank Eugene Speer for numerous valuable comments and
suggestions. He found serious mathematical errors in early drafts of this
paper, and the article is vastly improved because of his careful work.

REFERENCES

1. J. van den Berg and H. Kesten, Inequalities with applications to percolation and reliability,
J. Appl. Probab. 22:556�569 (1985).

2. P. Gacs, Reliable computation with cellular automata, J. Comput. Syst. Sci. 32:15�78
(1986).

3. P. Gacs, G. Kurdyumov, and L. Levin, One-dimensional homogeneous media dissolving
finite islands, Problems of Information Transmission 14:92�96 (1978).

4. L. Gray, The positive rates problem for attractive nearest-neighbor systems on Z,
Z. Wahrsch. verw. Gebiete 61:389�404 (1982).

5. L. Gray, The behavior of processes with statistical mechanical properties, Percolation
Theory and Ergodic Theory of Infinite Particle Systems (Springer-Verlag, New York, 1987),
pp. 131�167.

6. G. Kurdyumov, An example of a nonergodic homogeneous one-dimensional random
medium with positive transition probabilities, Sov. Math. Dokl. 19:211�214 (1978).

7. T. Liggett, Interacting Particle Systems (Springer-Verlag, New York, 1985).
8. K. Park, Ergodicity and mixing rate of one-dimensional cellular automata, Ph.D. Thesis

(Boston University, Boston, 1996).
9. A. Toom, Stable and attrative trajectories in multicomponent systems, Advances in Prob-

ability, Vol. 6 (Dekker, New York, 1980), pp. 549�575.

44 Gray

